# **ENVIRONMENTAL PRODUCT DECLARATION**

as per ISO 14025 and EN 15804+A1

Owner of the Declaration modulyss<sup>o</sup>

Programme holder Institut Bauen und Umwelt e.V. (IBU

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-MOD-20210150-CBC1-EN

Valid to 08/07/2021

# **Tufted carpet tiles**

with a maximum total pile weight of 1300 g/m², a pile material of 100% polyamide 6, ecoBack or comfortBackeco backing

# modulyss®



www.ibu-epd.com | https://epd-online.com





# **General Information**

| modulyss <sup>®</sup>                                               | Tufted carpet tiles                                                                                                                  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | max. total pile weight 1300 g/m²                                                                                                     |
|                                                                     | 100% PA 6, ecoBack or                                                                                                                |
|                                                                     | comfortBack <sup>eco</sup> backing                                                                                                   |
| Programme holder                                                    | Owner of the declaration                                                                                                             |
| IBU – Institut Bauen und Umwelt e.V.                                | modulyss                                                                                                                             |
| Panoramastr. 1                                                      | Zevensterrestraat 21                                                                                                                 |
| 10178 Berlin                                                        | 9240 Zele                                                                                                                            |
| Germany                                                             | Belgium                                                                                                                              |
| Declaration number                                                  | Declared product / declared unit                                                                                                     |
| EPD-MOD-20210150-CBC1-EN                                            | 1 m² tufted carpet tiles with a surface pile of 100% virgin PA 6 and an ecoBack or comfortBackeco backing                            |
| This declaration is based on the product                            | Scope:                                                                                                                               |
| category rules:                                                     | The manufacturer declaration applies to modular                                                                                      |
| Floor coverings, 02/2018                                            | carpet tiles with ecoBack or comfortBackeco, a pile                                                                                  |
| (PCR checked and approved by the SVR)                               | material of PA 6 with a maximum total pile weight of 1300 g/m². The products are produced in Zele,                                   |
| Issue date                                                          | Belgium                                                                                                                              |
| 08/07/2021                                                          | LCA results for products with a maximum total pile                                                                                   |
|                                                                     | weight of 500 g/m² can be taken from the                                                                                             |
| Valid to                                                            | <ul> <li>corresponding tables of the annexe. Specific data for<br/>every product within the declared group of products in</li> </ul> |
| 07/07/2026                                                          | relation to its total pile weight can be calculated by                                                                               |
|                                                                     | using equation 1 given in the annexe (see annexe                                                                                     |
|                                                                     | chapter: 'General Information on the annexe').                                                                                       |
|                                                                     | The declaration is only valid in conjunction with a valid                                                                            |
|                                                                     | GUT-PRODIS license of the product.                                                                                                   |
|                                                                     | The owner of the declaration shall be liable for the                                                                                 |
|                                                                     | underlying information and evidence; the IBU shall not                                                                               |
|                                                                     | be liable with respect to manufacturer information, life cycle assessment data and evidences.                                        |
|                                                                     | The EPD was created according to the specifications                                                                                  |
|                                                                     | of <i>EN 15804+A1</i> . In the following, the standard will be simplified as <i>EN 15804</i> .                                       |
| 1. 1.                                                               | Verification                                                                                                                         |
| May 11 he                                                           | The standard <i>EN 15804</i> serves as the core PCR                                                                                  |
| Man Roben                                                           | Independent verification of the declaration and data                                                                                 |
| , , , , , , , , , , , , , , , , , , , ,                             | according to ISO 14025:2010                                                                                                          |
| Dipl. Ing. Hans Peters (chairman of Institut Bauen und Umwelt e.V.) | internally x externally                                                                                                              |
| Stank Hails                                                         | Angela Schindle                                                                                                                      |
| Dr. Alexander Röder                                                 | Angela Schindler                                                                                                                     |
| (Managing Director Institut Bauen und Umwelt e.V.))                 | (Independent verifier)                                                                                                               |

# **Product**

# **Product description/Product definition**

Tufted carpet tiles having a surface pile of polyamide 6 and an ecoBack or comfortBackeco backing.

The colour of the carpet is generated either by solution dyed yarn or aqueous dyeing methods.

The total recycled content amounts to at least 36% with a total pile weight of 1300 g/m² and a comfortBackeco backing and at least 33% with a total pile weight of 1300 g/m² and an ecoBack backing. The declaration applies to a group of products with a maximum total pile weight of 1300 g/m².

LCA results for products with a maximum total pile weight of 500 g/m² can be taken from the corresponding tables of the annexe. Results for specific products with any other total pile weight can be calculated by using equation 1 given in the annexe (see annexe chapter: 'General Information on the annexe').

For the placing on the market of the product in the European Union/European Free Trade Association (EU/EFTA) (with the exception of Switzerland)

Regulation (EU) No. 305/2011 Construction Product Regulation (CPR) applies. The product needs a



Declaration of Performance (DoP) taking into consideration *DIN EN 14041: 2018-05*, Resilient, textile and laminate floor coverings - Essential characteristics and the CE-marking. The DoP of the product can be found on the manufacturer's technical information section. For the application and use of the product the respective national provisions apply.

# **Application**

According to the use class as defined in *EN 1307* the products can be used in professional areas. The use class can be found on the technical data sheet of the product.

# **Technical Data**

# Constructional data

| Name                | Value                            | Unit |
|---------------------|----------------------------------|------|
| Type of             | Tufted tiles, solution dyed yarn |      |
| manufacture         | or aqueous dyeing methods        | _    |
| Product Form        | Tiles 50 cm x 50 cm              | -    |
| Secondary backing   | ecoBack or comfortBackeco        | -    |
| Yarn type           | polyamide 6                      | -    |
| Total pile weight   | max. 1300                        | g/m² |
| Total carpet weight | max. 5000                        | g/m² |

Performance data of the product in accordance with the declaration of performance with respect to its essential characteristics according to *EN 14041: 2018-05*, Resilient, textile and laminate floor coverings - Essential characteristics.

Additional product properties in accordance with *EN* 1307 can be found on the Product Information System *PRODIS* using the *PRODIS* registration number of the product (www.pro-dis.info) or on the manufacturer's technical information section (www.modulyss.com).

# Base materials/Ancillary materials

| Name               | Value | Unit |
|--------------------|-------|------|
| Polyamide 6        | 26,0  | %    |
| Polyester          | 10,8  | %    |
| Polypropylene      | 0.6   | %    |
| Limestone          | 32,8  | %    |
| Aluminiumhydroxide | 10,1  | %    |
| SBR-latex          | 9,8   | %    |
| Polyolefin         | 8,8   | %    |
| Glass fibre        | 0,2   | %    |
| Additives          | 0,8   | %    |

This product contains substances listed in the *ECHA* candidate list (16.01.2020) or other carcinogenic, mutagenic and reprotoxic (CMR) substances in categories 1A or 1B which are not on the candidate list exceeding 0.1 percentage by mass: no

The products are registered in the *GUT-PRODIS* Information System. The *PRODIS* system ensures the compliance with limitations of various chemicals and Volatile Organic Compound (VOC)-emissions and a ban on the use of all substances that are listed as 'Substances of Very High Concern' (SVHC) under *REACH*.

# Reference service life

A calculation of the reference service life according to *ISO 15686* is not possible.

The service life of textile floor coverings strongly depends on the correct installation taking into account the declared use classification and the adherence to cleaning and maintenance instructions.

A minimum service life of 10 years can be assumed, technical service life can be considerably longer.

# LCA: Calculation rules

# **Declared Unit**

| Name                      | Value | Unit           |
|---------------------------|-------|----------------|
| Declared unit             | 1     | m <sup>2</sup> |
| Conversion factor to 1 kg | 5     | ka/m²          |

The declared unit refers to 1 m² produced textile floor covering. Output of module A5 'Assembly' is 1 m² installed textile floor covering.

# System boundary

Type of EPD: Cradle-to-grave

System boundaries of modules A, B, C, D:

# A1-A3 Production:

Energy supply and production of the basic material, processing of secondary material, auxiliary material, transport of the material to the manufacturing site, emissions, waste water treatment, packaging material and waste processing up to the landfill disposal of residual waste (except radioactive waste). Benefits for generated electricity and steam due to the incineration of production waste are aggregated.

# A4 Transport:

Transport of the packed textile floor covering from factory gate to the place of installation.

# A5 Installation:

Installation of the textile floor covering, processing of installation waste and packaging waste up to the landfill disposal of residual waste (except radioactive waste), the production of the amount of carpet that occurs as installation waste including its transport to the place of installation.

Generated electricity and steam due to the incineration of waste are listed in the result table as exported energy.

Preparing of the floor and auxiliary materials (adhesives, fixing agents, PET connectors) are beyond the system boundaries and not taken into account.

# B1 Use:

Indoor emissions during the use stage. After the first year, no product-related VOC emissions are relevant due to known VOC decay curves of the product.



#### B2 Maintenance:

Cleaning of the textile floor covering for a period of 1 year:

Vacuum cleaning – electricity supply

Wet cleaning – electricity, water consumption, production of the cleaning agent, waste water treatment.

The declared values in this module have to be multiplied by the assumed service life of the floor covering in the building in question (see annexe, chapter 'General information on use stage').

# B3 - B7:

The modules are not relevant and therefore not declared.

#### C1 De-construction:

The floor covering is de-constructed manually and no additional environmental impact is caused.

# C2 Transport:

Transport of the carpet waste to a landfill, to the municipal waste incineration plant (MWI) or to the waste collection facility for recycling.

# C3 Waste processing:

C3-1: Landfill disposal needs no waste processing.

C3-2: Impact from waste incineration (plant with

R1>0.6), generated electricity and steam are listed in the result table as exported energy.

C3-3: Collection of the carpet waste for recovery in the cement industry, waste processing (granulating),

transport to the cement plant, emissions from the incineration.

# C4 Disposal

C4-1: Impact from landfill disposal,

C4-2: The carpet waste leaves the system in module C3-2.

C4-3: The pre-processed carpet waste leaves the system in module C3-3

# D Recycling potential:

D-A5: Benefits for generated energy due to incineration of packaging and installation waste (incineration plant with R1 > 0.6),

D-1: Benefits for generated energy due to landfill disposal of carpet waste at the end-of-life,

D-2: Benefits for generated energy due to incineration of carpet waste at the end-of-life (incineration plant with R1 > 0.6),

D-3: Benefits for saved fossil energy and saved inorganic material due to recovery of the carpet in a cement plant.

# Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

Background data are taken from the *GaBi database* 2021-1. Remaining data gaps are covered by the ecoinvent 3.6 database 2019

# LCA: Scenarios and additional technical information

The following information refer to the declared modules and are the basis for calculations or can be used for further calculations. The indicated values refer to the declared functional unit of all products with a total pile weight of 1300 g/m<sup>2</sup>.

Transport to the construction site (A4)

| Transport to the construction site (        | ~~,    |         |
|---------------------------------------------|--------|---------|
| Name                                        | Value  | Unit    |
| Litres of fuel (truck, EURO 0-6 mix)        | 0.0117 | l/100km |
| Transport distance                          | 700    | km      |
| Capacity utilisation (including empty runs) | 55     | %       |

Installation in the building (A5)

| installation in the building (A3) |       |      |  |  |  |  |  |  |
|-----------------------------------|-------|------|--|--|--|--|--|--|
| Name                              | Value | Unit |  |  |  |  |  |  |
| Material loss                     | 0.15  | ka   |  |  |  |  |  |  |

Polyethene packaging waste and installation waste are considered to be incinerated in a municipal waste incineration plant. Cardboard packaging waste is considered to be recycled.

Preparation of the floor and auxiliaries (adhesives, fixing agents, PET connectors, etc.) are not taken into account.

specific useful life can be established. The effects of Module B2 need to be calculated on the basis of this useful life in order to obtain the overall environmental impacts.

| Name                                | Value | Unit   |
|-------------------------------------|-------|--------|
| Maintenance cycle (wet cleaning)    | 1.5   | 1/year |
| Maintenance cycle (vacuum cleaning) | 208   | 1/year |
| Water consumption (wet cleaning)    | 0.004 | m³     |
| Cleaning agent (wet cleaning)       | 0.09  | kg     |
| Electricity consumption             | 0.314 | kWh    |

Further information on cleaning and maintenance see www.modulyss.com

# End of Life (C1-C4)

Three different end-of-life scenarios are declared and the results are indicated separately in module C. Each scenario is calculated as a 100% scenario.

Scenario 1: 100% landfill disposal

Scenario 2: 100% municipal waste incineration (MWI)

with R1>0.6

Scenario 3: 100% recycling in the cement industry

If combinations of these scenarios have to be calculated this should be done according to the following scheme:

# Maintenance (B2)

The values for cleaning refer to 1  $\rm m^2$  floor covering used in commercial areas per year. Depending on the application based on *ISO 10874*, the technical service life recommended by the manufacturer and the anticipated strain on the floor by customers, the case-



EOL-impact = x% impact (Scenario 1) + y% impact (Scenario 2) + z% impact (Scenario 3) with x% + y% + z% = 100%

| Name                              | Value | Unit |
|-----------------------------------|-------|------|
| Collected as mixed construction   | 5     | ka   |
| waste (scenario 1 and 2)          | 5     | kg   |
| Collected separately (scenario 3) | 5     | kg   |
| Landfilling (scenario 1)          | 5     | kg   |
| Energy recovery (scenario 2)      | 5     | kg   |
| Energy recovery (scenario 3)      | 2.844 | kg   |
| Recycling (scenario 3)            | 2.156 | kg   |

# Reuse, recovery and/or recycling potentials (D), relevant scenario information

Recovery or recycling potentials due to the three endof-life scenarios (module C) are indicated separately.

# Recycling in the cement industry (scenario 3) VDZ e.V.

The organic material of the carpet is used as secondary fuel in a cement kiln. It mainly substitutes for lignite (61.9%), hard coal (26.8%) and petrol coke (11.3%).

The inorganic material is substantially integrated in the cement clinker and substitutes for original material input



# LCA: Results

The LCA results refer to all declared products with a maximum total pile weight of 1300 g/m<sup>2</sup>. LCA results for products with a maximum total pile weight of 500 g/m<sup>2</sup> can be taken from the corresponding tables of the annexe. Results for specific products with any other total pile weight can be calculated by using equation 1 given in the annexe (see annexe chapter: 'General Information on the annexe'). The declared result figures in module B2 have to be multiplied by the assumed service life (in years) of the floor covering in the building under consideration. Information on non-relevant modules: Modules B3 - B7 are not relevant during the service life of the carpet. Modules C1, C3/1, C4/2 and C4/3 cause no additional impact (see chapter "LCA: Calculation rules" in this document). All these modules are declared and marked as 'modules not relevant/declared'. Module C2 represents

|                                                                       |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    | ios 1, 2<br>(versio                                                                                                                 |                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | present                                                                                                                                                                        | s modu                                                                                                                                     | le D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /A5. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alculat                                                                                                                                                      | ions a                                                                                                                           | re bas                                                                                                                                                           | ed on th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne CML                                                                                                                                                                                       |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    | SYST<br>RELEV                                                                                                                       |                                                                                                                      | UNDA                                                                                                                      | .RY (X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = INCL                                                                                                                                                                         | UDED                                                                                                                                       | IN L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .CA; I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = MOI                                                                                                                                                        | DULE                                                                                                                             | NOT I                                                                                                                                                            | DECLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RED;                                                                                                                                                                                         |
| PROL                                                                  | DUCT STAGE CONSTRUCTI ON PROCESS USE STAGE END OF LIFE STAGE STAGE                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                     |                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | BEYO<br>SY:                                                                                                                                | FITS AND<br>DADS<br>ND THE<br>STEM<br>IDARIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                              |
| Raw material supply                                                   | Transport                                                                                     | Manufacturing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Transport from the gate to the site                                                                                                                                                                | Assembly                                                                                                                            | Use                                                                                                                  | Maintenance                                                                                                               | Repair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Replacement                                                                                                                                                                    | Operational energy                                                                                                                         | esn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Operational water<br>use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | De-construction demolition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Transport                                                                                                                                                    | Waste processing                                                                                                                 | Disposal                                                                                                                                                         | Reuse-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recycling-<br>potential                                                                                                                                                                      |
| A1<br>X                                                               | <b>A2</b>                                                                                     | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A4<br>X                                                                                                                                                                                            | A5<br>X                                                                                                                             | B1 X                                                                                                                 | B2 X 1                                                                                                                    | B3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                | S5 B                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B7<br>MND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C1<br>MND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2                                                                                                                                                           | C3                                                                                                                               | C4                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D<br>X                                                                                                                                                                                       |
|                                                                       |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    | ^  <br>A - ENV                                                                                                                      |                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ^                                                                                                                                                                                            |
|                                                                       |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                     |                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                              |
|                                                                       | meter                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                               | A1-A3                                                                                                                               | A4                                                                                                                   | A5                                                                                                                        | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B2                                                                                                                                                                             | C2                                                                                                                                         | C3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C4/1                                                                                                                                                         | D                                                                                                                                | D/1                                                                                                                                                              | D/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D/3                                                                                                                                                                                          |
| Para                                                                  |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    | A1-A3                                                                                                                               |                                                                                                                      | <b>A</b> 5                                                                                                                | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                | C2                                                                                                                                         | C3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /2 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C4/1                                                                                                                                                         | D                                                                                                                                | D/1                                                                                                                                                              | <b>D/2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.03E-1                                                                                                                                                                                     |
| <b>Para</b>                                                           | meter                                                                                         | [kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit                                                                                                                                                                                               | <b>A1-A3</b><br>1.82E+1                                                                                                             | <b>A4</b> 2.98E-1                                                                                                    | <b>A5</b><br>9.69E-1                                                                                                      | <b>B1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B2                                                                                                                                                                             | <b>C2</b> 1.66E-2                                                                                                                          | <b>C3</b> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E+0 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>C4/1</b><br>3.40E-1                                                                                                                                       | <b>D</b><br>-6.20E-2<br>-9.54E-                                                                                                  | <b>D/1</b>                                                                                                                                                       | <b>D/2</b> 0 -1.81E+0 -2.79E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -6.03E-1<br>-3.07E-                                                                                                                                                                          |
| Para<br>G'                                                            | <b>meter</b><br>WP                                                                            | [kg C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Unit</b> CO <sub>2</sub> -Eq.] FC11-Eq. SO <sub>2</sub> -Eq.]                                                                                                                                   | A1-A3<br>1.82E+1<br>] 3.32E-9<br>2.81E-2                                                                                            | A4<br>2.98E-1<br>5.21E-17<br>1.23E-3                                                                                 | 9.69E-1<br>9.96E-1<br>1.02E-3                                                                                             | B1<br>0.00E+<br>1 0.00E+<br>3 0.00E+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>B2</b> 0 2.91E-1 0 1.21E-8 0 1.14E-3                                                                                                                                        | C2<br>1.66E-2<br>2.90E-18<br>6.86E-5                                                                                                       | <b>C3/</b> 6.36E 2.31E 4.43E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E+0 6.4<br>E-15 3.2<br>E-3 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C3/3<br>42E+0<br>20E-15 1<br>66E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>C4/1</b><br>3.40E-1<br>1.15E-15<br>8.81E-4                                                                                                                | -6.20E-2<br>-9.54E-<br>16<br>-7.21E-5                                                                                            | D/1<br>2 0.00E+<br>0.00E+<br>5 0.00E+                                                                                                                            | D/2<br>0 -1.81E+0<br>-2.79E-<br>14<br>0 -2.11E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 -6.03E-1<br>-3.07E-<br>15<br>-1.92E-3                                                                                                                                                      |
| Para G' O                                                             | MP<br>DP<br>AP                                                                                | [kg C<br>[kg C<br>[kg (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit<br>CO <sub>2</sub> -Eq.]<br>FC11-Eq.<br>SO <sub>2</sub> -Eq.]<br>PO <sub>4</sub> ) <sup>3</sup> -Eq.                                                                                          | A1-A3<br>1.82E+1<br>] 3.32E-9<br>2.81E-2<br>] 4.66E-3                                                                               | 2.98E-1<br>5.21E-17<br>1.23E-3<br>3.14E-4                                                                            | 9.69E-1<br>9.96E-1<br>1.02E-3<br>1.83E-4                                                                                  | B1<br>0.00E+1<br>1 0.00E+1<br>3 0.00E+1<br>0.00E+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>B2</b> 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 3.17E-4                                                                                                                              | 1.66E-2<br>2.90E-18<br>6.86E-5<br>1.75E-5                                                                                                  | 6.36E<br>2.31E<br>4.43E<br>1.10E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E+0 6.4<br>E-15 3.2<br>E-3 4.6<br>E-3 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20E-15 1<br>66E-3<br>15E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C4/1<br>3.40E-1<br>1.15E-15<br>8.81E-4<br>9.56E-4                                                                                                            | -6.20E-2<br>-9.54E-<br>16<br>-7.21E-5<br>-9.89E-6                                                                                | D/1<br>2 0.00E+<br>0.00E+<br>5 0.00E+<br>6 0.00E+                                                                                                                | D/2 0 -1.81E+0 -2.79E- 14 0 -2.11E-3 0 -2.89E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 -6.03E-1<br>-3.07E-<br>15<br>-1.92E-3<br>-2.68E-4                                                                                                                                          |
| Para G' O A E                                                         | MP DP AP EP DCP                                                                               | [kg C<br>[kg C<br>[kg (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit CO <sub>2</sub> -Eq.] FC11-Eq. SO <sub>2</sub> -Eq.] PO <sub>4</sub> ) <sup>3</sup> -Eq. thene-Eq.                                                                                            | A1-A3<br>1.82E+1<br>3.32E-9<br>2.81E-2<br>4.66E-3<br>3.48E-3                                                                        | 2.98E-1<br>5.21E-17<br>1.23E-3<br>3.14E-4<br>-5.28E-4                                                                | 9.69E-1<br>9.96E-1<br>1.02E-3<br>1.83E-4<br>9.56E-5                                                                       | B1<br>0.00E+<br>1 0.00E+<br>3 0.00E+<br>4 0.00E+<br>5 6.29E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>B2</b> 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 3.17E-4 5 1.47E-4                                                                                                                    | C2<br>1.66E-2<br>2.90E-18<br>6.86E-5<br>1.75E-5<br>-2.94E-5                                                                                | 6.36E<br>2.31E<br>4.43E<br>1.10E<br>2.70E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E+0 6.4<br>E-15 3.2<br>E-3 4.6<br>E-3 1.7<br>E-4 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20E-15 1<br>66E-3<br>15E-3<br>00E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>C4/1</b> 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5                                                                                                         | -6.20E-2<br>-9.54E-<br>16<br>-7.21E-5<br>-9.89E-6<br>-6.60E-6                                                                    | D/1 2 0.00E+ 0.00E+ 5 0.00E+ 6 0.00E+ 6 0.00E+                                                                                                                   | D/2 0 -1.81E+0 -2.79E- 14 0 -2.11E-3 0 -2.89E-4 0 -1.93E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 -6.03E-1<br>-3.07E-<br>15<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4                                                                                                                              |
| Para G' O A E PC AL                                                   | MP<br>DP<br>AP                                                                                | [kg C<br>[kg C<br>[kg (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit<br>CO <sub>2</sub> -Eq.]<br>FC11-Eq.<br>SO <sub>2</sub> -Eq.]<br>PO <sub>4</sub> ) <sup>3</sup> -Eq.                                                                                          | A1-A3<br>1.82E+1<br>] 3.32E-9<br>2.81E-2<br>] 4.66E-3<br>] 3.48E-3<br>1.01E-5                                                       | 2.98E-1<br>5.21E-17<br>1.23E-3<br>3.14E-4<br>-5.28E-4<br>2.64E-8                                                     | 9.69E-1<br>9.96E-1<br>1.02E-3<br>1.83E-4<br>9.56E-5<br>3.10E-7                                                            | B1<br>0.00E+1<br>0.00E+1<br>0.00E+1<br>0.00E+1<br>6.29E-5<br>0.00E+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>B2</b> 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 3.17E-4                                                                                                                              | 1.66E-2<br>2.90E-18<br>6.86E-5<br>1.75E-5<br>-2.94E-5<br>1.47E-9                                                                           | C3/<br>6.36E<br>2.31E<br>4.43E<br>1.10E<br>2.70E<br>2.01E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E+0 6.4<br>E-15 3.2<br>E-3 4.6<br>E-3 1.1<br>E-4 2.0<br>E-7 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20E-15 1<br>66E-3<br>15E-3<br>00E-4<br>14E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>C4/1</b> 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8                                                                                                 | -6.20E-2<br>-9.54E-<br>16<br>-7.21E-5<br>-9.89E-6<br>-6.60E-6                                                                    | D/1 2 0.00E+ 0.00E+ 5 0.00E+ 6 0.00E+ 6 0.00E+ 8 0.00E+                                                                                                          | D/2 0 -1.81E+0 -2.79E- 14 0 -2.11E-3 0 -2.89E-4 0 -1.93E-4 0 -3.41E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 -6.03E-1<br>-3.07E-<br>15<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4<br>-3.06E-7                                                                                                                  |
| Para G' O AL AL                                                       | meter WP DP AP EP DCP DPE DPE GWF                                                             | [kg C<br>[kg (F<br>[kg el<br>[kg el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit  CO <sub>2</sub> -Eq.]  FC11-Eq.  SO <sub>2</sub> -Eq.]  PO <sub>4</sub> ) <sup>3</sup> -Eq. thene-Eq. Sb-Eq.]  [MJ]  pal warmi                                                               | A1-A3  1.82E+1  3.32E-9  2.81E-2  4.66E-3  3.48E-3  1.01E-5  3.60E+2                                                                | 2.98E-1<br>5.21E-17<br>1.23E-3<br>3.14E-4<br>-5.28E-4<br>2.64E-8<br>4.06E+0<br>al; ODP =<br>Formati                  | 9.69E-1<br>9.96E-1<br>1.02E-3<br>1.83E-4<br>9.56E-5<br>3.10E-7<br>1.10E+1                                                 | B1 0.00E+1 1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 1 0.00E+1 1 0.00E+1 1 0.00E+1 n potential of tro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B2<br>0 2.91E-1<br>0 1.21E-8<br>0 1.14E-3<br>0 3.17E-4<br>5 1.47E-4<br>0 4.43E-6                                                                                               | 1.66E-2<br>2.90E-18<br>6.86E-5<br>1.75E-5<br>-2.94E-5<br>1.47E-9<br>2.26E-1<br>atospheriozone ph                                           | 6.36E<br>2.31E<br>4.43E<br>1.10E<br>2.70E<br>2.01E<br>3.41E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E+0 6.4<br>E-15 3.2<br>E-3 1.1<br>E-4 2.0<br>E-7 2.1<br>E+0 4.2<br>ne layer<br>emical of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23/3<br>42E+0<br>20E-15 1<br>66E-3<br>15E-3<br>00E-4<br>14E-7<br>28E+0 5<br>7; AP = 200000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4/1 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8 5.07E+0 Acidifica s; ADPE                                                                              | -6.20E-2<br>-9.54E-<br>16<br>-7.21E-5<br>-9.89E-6<br>-6.60E-6<br>-1.17E-8<br>-8.90E-1                                            | D/1  2 0.00E+ 0.00E+ 5 0.00E+ 6 0.00E+ 6 0.00E+ 7 0.00E+ 8 0.00E+ 1 0.00E+ ntial of la                                                                           | D/2  0 -1.81E+0     -2.79E-     14     0 -2.11E-3     0 -2.89E-4     0 -1.93E-4     0 -3.41E-7     0 -2.60E+1     ind and wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 -6.03E-1<br>-3.07E-<br>15<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4<br>-3.06E-7<br>-6.94E+1<br>ater; EP =                                                                                        |
| Para G' O A E PC AI Captio                                            | MP DP AP EP DCP DPE DPF GWF Eutro                                                             | [kg C [kg C [kg (F [kg et ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit  CO₂Eq.]  FC11-Eq.  SO₂Eq.]  PO₄)³-Eq.; thene-Eq.  Sb-Eq.]  [M.]  all warmion potent                                                                                                          | A1-A3  1.82E+1  3.32E-9  2.81E-2  4.66E-3  3.48E-3  1.01E-5  3.60E+2  ng potentia ial; POCP                                         | 2.98E-1<br>5.21E-17<br>1.23E-3<br>3.14E-4<br>-5.28E-4<br>2.64E-8<br>4.06E+0<br>al; ODP =<br>Formati                  | 9.69E-1<br>9.96E-1<br>1.02E-3<br>1.83E-4<br>9.56E-5<br>3.10E-7<br>1.10E+1<br>Depletion on poter<br>resource               | B1 0.00E+1 1 0.00E+1 0.00E+1 1 0.00E+1 0.00E+1 1 0.00E+1 1 0.00E+1 0.00E | B2 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 3.17E-4 5 1.47E-4 0 4.43E-6 0 6.77E+0 al of the str                                                                                         | 1.66E-2<br>2.90E-18<br>6.86E-5<br>1.75E-5<br>-2.94E-5<br>1.47E-9<br>2.26E-1<br>atospheriozone ph<br>depletion                              | 6.36E<br>2.31E<br>4.43E<br>1.10E<br>2.70E<br>2.01E<br>3.41E<br>c ozonotoche<br>poten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E+0 6.4<br>E-15 3.2<br>E-3 1.<br>E-4 2.0<br>E-7 2.<br>E+0 4.2<br>ne layer<br>emical of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23/3<br>42E+0<br>20E-15 1<br>66E-3<br>15E-3<br>00E-4<br>14E-7<br>28E+0 5<br>7; AP = 200000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4/1 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8 5.07E+0 Acidifica s; ADPE sources                                                                      | -6.20E-2<br>-9.54E-<br>16<br>-7.21E-5<br>-9.89E-6<br>-6.60E-6<br>-1.17E-8<br>-8.90E-1<br>tion pote<br>= Abiotic                  | D/1 2 0.00E+ 0.00E+ 6 0.00E+ 7 0.00E+ 8 0.00E+ 8 0.00E+ 1 0.00E+ 1 0.00E+ 1 0.00E+ 1 0.00E+                                                                      | D/2  0 -1.81E+C 0 -2.79E-14 0 -2.11E-3 0 -2.89E-4 0 -1.93E-4 0 -3.41E-7 0 -2.60E+1 and and was on potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 -6.03E-1<br>-3.07E-<br>15<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4<br>-3.06E-7<br>-6.94E+1<br>ater; EP =<br>I for non-                                                                          |
| Para G' O  A  E  PC  AL  AL  Captio                                   | MP DP AP EP DCP DPE DPF GWF Eutro                                                             | [kg C [kg C [kg (F [kg et ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit  CO₂Eq.]  FC11-Eq.  SO₂Eq.]  PO₄)³-Eq.; thene-Eq.  Sb-Eq.]  [M.]  all warmion potent                                                                                                          | A1-A3  1.82E+1  3.32E-9  2.81E-2  4.66E-3  3.48E-3  1.01E-5  3.60E+2  ng potentia ial; POCP                                         | 2.98E-1<br>5.21E-17<br>1.23E-3<br>3.14E-4<br>-5.28E-4<br>2.64E-8<br>4.06E+0<br>al; ODP =<br>Formati                  | 9.69E-1<br>9.96E-1<br>1.02E-3<br>1.83E-4<br>9.56E-5<br>3.10E-7<br>1.10E+1<br>Depletion on poter<br>resource               | B1 0.00E+1 1 0.00E+1 0.00E+1 1 0.00E+1 0.00E+1 1 0.00E+1 1 0.00E+1 0.00E | B2 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 3.17E-4 5 1.47E-4 0 4.43E-6 0 6.77E+0 al of the str                                                                                         | 1.66E-2<br>2.90E-18<br>6.86E-5<br>1.75E-5<br>-2.94E-5<br>1.47E-9<br>2.26E-1<br>atospheriozone ph<br>depletion                              | 6.36E<br>2.31E<br>4.43E<br>1.10E<br>2.70E<br>2.01E<br>3.41E<br>c ozonotoche<br>poten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E+0 6.4<br>E-15 3.2<br>E-3 1.<br>E-4 2.0<br>E-7 2.<br>E+0 4.2<br>ne layer<br>emical of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23/3<br>42E+0<br>20E-15 1<br>66E-3<br>15E-3<br>00E-4<br>14E-7<br>28E+0 5<br>7; AP = 200000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4/1 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8 5.07E+0 Acidifica s; ADPE sources                                                                      | -6.20E-2<br>-9.54E-<br>16<br>-7.21E-5<br>-9.89E-6<br>-6.60E-6<br>-1.17E-8<br>-8.90E-1<br>tion pote<br>= Abiotic                  | D/1 2 0.00E+ 0.00E+ 6 0.00E+ 7 0.00E+ 8 0.00E+ 8 0.00E+ 1 0.00E+ 1 0.00E+ 1 0.00E+ 1 0.00E+                                                                      | D/2  0 -1.81E+C 0 -2.79E-14 0 -2.11E-3 0 -2.89E-4 0 -1.93E-4 0 -3.41E-7 0 -2.60E+1 and and was on potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 -6.03E-1<br>-3.07E-<br>15<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4<br>-3.06E-7<br>-6.94E+1<br>ater; EP =<br>I for non-                                                                          |
| Para  G' O  A  E  PC  AL  AL  Captio  RESL  floor  Parame             | meter  WP  DP  AP  EP  OCP  DPE  DPF  GWF  Eutro  JLTS  Coveri                                | [kg C [kg C [kg (F [kg et al. ] ] ] ] [kg et al. ] [kg et | Unit  CO <sub>2</sub> -Eq.]  FC11-Eq.  SO <sub>2</sub> -Eq.]  PO <sub>4</sub> )3-Eq.]  thene-Eq.  Sb-Eq.]  [M.]  all warmi on potent  HE LC.  A1-A3                                                | A1-A3  1.82E+1  1.3.32E-9  2.81E-2  1.4.66E-3  1.01E-5  3.60E+2  ng potentiaial; POCP  A - INDI  A4                                 | A4  2.98E-1  5.21E-17  1.23E-3  3.14E-4  -5.28E-4  2.64E-8  4.00E+0  a) ODP =  Formati fossi  CATOR                  | 9.69E-1<br>9.96E-1<br>1.02E-3<br>1.83E-4<br>9.56E-5<br>3.10E-7<br>1.10E+7<br>Depletion<br>on poter<br>resource            | B1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B2 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 3.17E-4 5 1.47E-4 0 4.43E-6 0 6.77E+0 al of the str pospheric = = Abiotic  C2                                                               | 1.66E-2<br>2.90E-18<br>6.86E-5<br>1.75E-5<br>-2.94E-5<br>1.47E-9<br>2.26E-1<br>atospheri<br>zone ph<br>depletion<br>ESOU                   | C3/<br>6.36E<br>2.31E<br>4.43E<br>1.10E<br>2.70E<br>3.41E<br>c ozonotoche<br>poten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E+0 6.4<br>E-15 3.2<br>E-3 4.6<br>E-3 1.<br>E-4 2.0<br>E-7 2.2<br>E+0 4.2<br>ne layer<br>emical ontial for the USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23/3<br>42E+0<br>60E-15<br>15E-3<br>15E-3<br>00E-4<br>14E-7<br>28E+0<br>7; AP = 20<br>20xidants<br>fossil re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C4/1 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8 5.07E+0 Acidifica s; ADPE sources Ording                                                               | -6.20E-2 -9.54E- 16 -7.21E-5 -9.89E-6 -6.60E-6 -1.17E-8 -8.90E-1 tion pote = Abiotic                                             | D/1  2 0.00E+                                                  | D/2  D/2  0 -1.81E+(0 -2.79E-14) 0 -2.11E-3 0 -2.11E-3 0 -2.11E-3 0 -2.89E-4 0 -3.41E-7 0 -2.60E+1 and and wa on potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 -6.03E-1<br>-3.07E-1<br>15<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4<br>-3.06E-7<br>-6.94E+1<br>tter; EP = I for non-                                                                            |
| Para G' O O A E PC AI Captio  RESU floor Parame PER                   | meter  WP  DP  AP  EP  OCP  DPE  DPF  GWF  Eutro  L  COVERT  Eter L  E                        | [kg C [kg C [kg (F [kg el] [kg ophication]]]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit  CO <sub>2</sub> -Eq.]  FC11-Eq.  SO <sub>2</sub> -Eq.]  PO <sub>4</sub> ) <sup>3</sup> -Eq.  thene-Eq.  Sb-Eq.]  [MJ]  val warmi  on potent  HE LC.  A1-A3  3.10E+1                          | A1-A3  1.82E+1  3.32E-9  2.81E-2  4.66E-3  1.01E-5  3.60E+2  ng potential; POCP  A - INDI  A4  2.27E-1                              | A4  2.98E-1  5.21E-17  1.23E-3  3.14E-4  -5.28E-4  2.64E-8  2.64E-8  CATOF  A5  1.36E+0                              | 9.69E-1 9.96E-1 1.02E-3 1.83E-4 9.56E-5 3.10E-7 1.10E+1 Depletion on poter resource STO  B1 0.00E+1                       | B1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 0.00E+1 DESO B2 0 1.24E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B2 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 1.17E-4 5 1.47E-4 0 4.43E-6 0 6.77E+0 al of the str pospheric = Abiotic craft RIBE R  C2 +0 1.26E                                           | 1.66E-2 2.90E-18 6.86E-5 1.75E-5 -2.94E-5 1.47E-9 2.26E-1 atospheriozone ph depletion ESOU  C3 -2 5.41I                                    | C3/6.36E 2.31E 4.43E 1.10E 2.01E 3.41E c czon RCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E+0 6.4<br>E-15 3.2<br>E-3 4.6<br>E-3 1.1<br>E-4 2.0<br>E-7 2.1<br>E+0 4.2<br>ential for the USE<br>C3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23/3 42E+0 20E-15 1 66E-3 15E-3 00E-4 14E-7 14E-7 0xidants fossil re accc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C4/1 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8 5.07E+0 Acidifica s; ADPE sources ording                                                               | D -6.20E-2 -9.54E- 16 -7.21E-5 -9.89E-6 -6.60E-6 -1.17E-8 -8.90E-1 tion pote = Abiotic to EN                                     | D/1  2 0.00E+ | D/2  D/2  0 -1.81E+(0  -2.79E-14  0 -2.11E-3  0 -2.11E-3  0 -2.89E-4  0 -1.93E-4  0 -3.41E-7  0 -2.60E+7  and and wa  protentia  4+A1:  D/2  -7.18E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 -6.03E-1<br>-3.07E-1<br>15<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4<br>-3.06E-7<br>-6.94E+1<br>tter; EP = I for non-                                                                            |
| Para G' O O A E PC AI Captio  RESU floor C Parame PER PERI            | meter WP DP AP EP DOCP DPE DPF GWF Eutro  JLTS COVERT E E E E E E M I E I E I E I E I E I E I | [kg C [kg C [kg (F [kg = G])]]]  P = Globophication  OF Thing  Jnit  MJ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit  CO <sub>2</sub> -Eq.]  FC11-Eq.  SO <sub>2</sub> -Eq.]  PO <sub>4</sub> ) <sup>3</sup> -Eq.  thene-Eq.  Sb-Eq.]  [M.]  bal warmi on potent  HE LC  A1-A3  3.10E+1  3.90E-1                   | A1-A3  1.82E+1  3.32E-9  2.81E-2  4.66E-3  1.01E-5  3.60E+2  ng potentia iai; POCP  A - INDI  A4  2.27E-1  0.00E+0                  | 2.98E-1 5.21E-17 1.23E-3 3.14E-4 -5.28E-4 2.64E-8 4.06E+0 Tossil CATOF  45 1.36E+0 -3.90E-1                          | 9.69E-1 9.96E-1 1.02E-3 1.83E-4 9.56E-5 3.10E-7 1.10E+* Depletion on poter resource STO  B1 0.00E+ 0.00E+                 | B1 0.00E+1 0.0 | B2 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 3.17E-4 5 1.47E-4 0 4.43E-6 0 6.77E+0 al of the str pospheric E = Abiotic  RIBE R  C2 +0 1.26E +0 0.00E                                     | 1.66E-2 2.90E-18 6.86E-5 1.75E-5 -2.94E-5 1.47E-9 2.26E-1 atospheriozone ph depletion ESOU  C30 -2 5.411 -0 0.00E                          | C3/<br>6.36E<br>2.31E<br>4.43E<br>1.10E<br>2.70E<br>2.01E<br>3.41E<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0.00C<br>0. | E+0 6.4<br>E-15 3.2<br>E-3 4.6<br>E-3 1.7<br>E-4 2.0<br>E-7 2.7<br>E+0 4.2<br>ne layer emical ontial for the control of the c | 23/3 42E+0 20E-15 66E-3 15E-3 100E-4 14E-7 28E+0 97; AP = 200000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4/1 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8 5.07E+0 Acidifica s; ADPE sources Ording                                                               | -6.20E-2 -9.54E- 16 -7.21E-5 -9.89E-6 -6.60E-6 -1.17E-8 -8.90E-1 tion pote = Abiotic  to EN  D  46E-1 (00E+0 (00E+0)             | D/1  2 0.00E+ 0.00E+0                            | D/2  D/2  -2.79E-14  -2.79E-14  -2.11E-3  0 -2.11E-3  0 -2.39E-4  0 -1.93E-4  0 -3.41E-7  0 -2.60E+1  and and was no potentia  4+A1:  D/2  -7.18E+0  0.00E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,-6.03E-1<br>-3.07E-1<br>-15<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4<br>-3.06E-7<br>-6.94E+1<br>-1 tter; EP = 1 for non-<br>-7.35E-1<br>0.00E+0                                                 |
| Para G G O A E E PC AII AII Captio  RESU floor Param PER PER PER PENF | meter WP DP AP EP DCP DPE DPF UCCOVER Eutro E E E E E E E E E E E E E E E E E E E             | [kg C [kg C [kg (F [kg = 1]] [kg ] [ | Unit  CO <sub>2</sub> -Eq.]  FC11-Eq.  SO <sub>2</sub> -Eq.]  PO <sub>4</sub> ) <sup>3</sup> -Eq.  thene-Eq.  Sb-Eq.]  [MJ]  val warmi  on potent  HE LC.  A1-A3  3.10E+1                          | A1-A3  1.82E+1  3.32E-9  2.81E-2  4.66E-3  1.01E-5  3.60E+2  ng potentiaial; POCP  A - INDI  A4  2.27E-1  2.00E+0  2.27E-1  4.07E+0 | 2.98E-1 5.21E-17 1.23E-3 3.14E-4 -5.28E-4 2.64E-8 4.06E+0 al; ODP = Formati fossil CATOF  A5 1.36E+0 3.90E-1 1.18E+1 | 9.69E-1 9.96E-1 1.02E-3 1.83E-4 9.56E-5 3.10E-7 1.10E+7 Depletion poter resourc RS TO  B1 0.00E++ 0.00E++ 0.00E++ 0.00E++ | B1 0.00E++ 1 0.0 | B2 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 1.14E-3 5 1.47E-4 5 1.47E-4 6 0 6.77E+0 al of the str pospheric = Abiotic RIBE R  C2 +0 1.26E +0 0.00E +0 1.26E +0 2.27E                    | C2  1.66E-2 2.90E-18 6.86E-5 1.75E-5 -2.94E-5 1.47E-9 2.26E-1 atospheriozone ph depletion ESOU  C3 -2 5.411 -1 7.94E                       | 2.31E 4.43E 1.10E 2.70E 2.01E 3.41E 2.00E 2.01E 3.41E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E+0 6.4 E-15 3.2 E-3 4.6 E-3 1.7 E-4 2.6 E-7 2.7 E+0 4.2 The layer emical of tital for the tital for               | 23/3 42E+0 20E-15 1 66E-3 15E-3 10E-4 14E-7 28E+0 2 7; AP = 20xidants fossil re 2 according 1 accordin | C4/1 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8 5.07E+0 Acidifica s; ADPE sources ording // // E-1 -2. | -6.20E-2 -9.54E- 16 -7.21E-5 -9.89E-6 -6.60E-6 -1.17E-8 -8.90E-1 tion pote = Abiotion  to EN  b  d 46E-1 (0) 00E+0 (0) 09E+0 (0) | D/1  2 0.00E+  0.00E+  0.00E+  0.00E+  0.00E+  0.00E+  0.00E+  0.00E+  0.00E+  0.00E+0  0.00E+0  0.00E+0                                                         | D/2  0 -1.81E+(0 -2.79E-14 -14 -19.3 -2.11E-3 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -1 | 0.6.03E-1<br>-3.07E-1<br>-1.92E-3<br>-2.68E-4<br>-2.08E-4<br>-3.06E-7<br>-6.94E+1<br>-1 for non-<br>-7.35E-1<br>-0.00E+0<br>-7.35E-1<br>-6.98E+1                                             |
| Para G' O A E E PC AL AI Captio  RESU floor Parame PER PER PER PER    | meter  WP  DP  AP  EP  DCP  DPE  DPE  DPF  GWF  Eutro  JLTS  Et [  M                          | [kg C [kg C [kg (F (kg)(F (kg)(F (kg)(F (kg)(F (kg)(F (kg))))))])))))))]))]))]))]))]))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit  CO <sub>2</sub> -Eq.]  FC11-Eq.  SO <sub>2</sub> -Eq.]  FC11-Eq.  SO <sub>2</sub> -Eq.]  SO <sub>4</sub> )3-Eq.  Sb-Eq.]  [MJ]  bal warmion potent  HE LC/  A1-A3  3.10E+1  3.90E-1  3.14E+1 | A1-A3  1.82E+1  3.32E-9  2.81E-2  1.4.66E-3  1.01E-5  3.60E+2  ng potentiaial; POCP  A - INDI  A4  2.27E-1  0.00E+0  2.27E-1        | 2.98E-1 5.21E-17 1.23E-3 3.14E-4 -5.28E-4 2.64E-8 1.0DP = Formati fossil  CATOF  45 1.36E+0 -3.90E-1 9.66E-1         | 9.69E-1 9.96E-1 1.02E-3 1.83E-4 9.56E-5 3.10E-7 1.10E+* Depletion on poter resourc SS TO  B1 0.00E+ 0.00E+ 0.00E+         | B1   0.00E+    1   | B2 0 2.91E-1 0 1.21E-8 0 1.14E-3 0 3.17E-4 5 1.47E-4 0 4.43E-6 0 6.77E+0 al of the str pospheric = Abiotic = Abiotic = RIBE R  C2 +0 1.26E +0 0.00E +0 1.26E +0 0.00E +0 0.00E | C2  1.66E-2 2.90E-18 6.86E-5 1.75E-5 -2.94E-5 1.47E-9 2.26E-1 atospheriozone phodepletion ESOU  C3, -2 5.411 +0 0.00E -2 1.7.94E +0 -7.571 | 2.31E 4.43E 1.10E 2.70E 2.01E 3.41E 2.01E 3.41E 2.11 3.41E 2.11 3.41E 3.41E 3.41E 3.41E 4.43E 4.43E 4.43E 5.41 5.41 6.43E 6.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E+0 6.4 E-15 3.2 E-3 1.7 E-3 1.7 E-4 2.0 E-7 2.7 E+0 4.2 The layer emical of the layer emical of the layer emical for the layer emical                | C3/3  42E+0  60E-15  66E-3  15E-3  00E-4  14E-7  28E+0  57, AP = 2000  C4  3.79  0.000  3.79  1.523  1.523  1.523  1.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4/1 3.40E-1 1.15E-15 8.81E-4 9.56E-4 7.93E-5 6.52E-8 5.07E+0 Acidifica s; ADPE sources ording // // E-1 -2. | D -6.20E-2 -9.54E-16 -7.21E-5 -9.89E-6 -6.60E-6 -1.17E-8 -8.90E-1 tion pote = Abiotic  to EN  D                                  | D/1  0.00E+  0.00E+0                             | D/2  0 -1.81E+(0 0 -2.79E- 14 0 -2.11E-3 0 -2.89E-4 0 -1.93E-4 0 -3.41E-7 0 -2.60E+1 and and was no potentia  4+A1:  D/2  -7.18E+0 0.00E+0 -7.18E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6.03E-1<br>  -3.07E-1<br>  15<br>  -1.92E-3<br>  -2.08E-4<br>  -2.08E-4<br>  -3.06E-7<br>  -6.94E-1<br>  ter; EP =<br>  for non-<br>  m²<br>  D/3<br>  -7.35E-1<br>  -0.00E+0<br>  -7.35E-1 |

| Parameter | Unit | A1-A3   | A4      | A5       | B1      | B2      | C2      | C3/2     | C3/3     | C4/1    | D        | D/1     | D/2      | D/3      |
|-----------|------|---------|---------|----------|---------|---------|---------|----------|----------|---------|----------|---------|----------|----------|
| PERE      | [MJ] | 3.10E+1 | 2.27E-1 | 1.36E+0  | 0.00E+0 | 1.24E+0 | 1.26E-2 | 5.41E-1  | 7.99E-1  | 3.79E-1 | -2.46E-1 | 0.00E+0 | -7.18E+0 | -7.35E-1 |
| PERM      | [MJ] | 3.90E-1 | 0.00E+0 | -3.90E-1 | 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.00E+0  | 0.00E+0  | 0.00E+0 | 0.00E+0  | 0.00E+0 | 0.00E+0  | 0.00E+0  |
| PERT      | [MJ] | 3.14E+1 | 2.27E-1 | 9.66E-1  | 0.00E+0 | 1.24E+0 | 1.26E-2 | 5.41E-1  | 7.99E-1  | 3.79E-1 | -2.46E-1 | 0.00E+0 | -7.18E+0 | -7.35E-1 |
| PENRE     | [MJ] | 2.99E+2 | 4.07E+0 | 1.18E+1  | 0.00E+0 | 7.86E+0 | 2.27E-1 | 7.94E+1  | 8.04E+1  | 5.23E+0 | -1.09E+0 | 0.00E+0 | -3.18E+1 | -6.98E+1 |
| PENRM     | [MJ] | 7.89E+1 | 0.00E+0 | -2.15E-1 | 0.00E+0 | 0.00E+0 | 0.00E+0 | -7.57E+1 | -7.57E+1 | 0.00E+0 | 0.00E+0  | 0.00E+0 | 0.00E+0  | 0.00E+0  |
| PENRT     | [MJ] | 3.78E+2 | 4.07E+0 | 1.16E+1  | 0.00E+0 | 7.86E+0 | 2.27E-1 | 3.73E+0  | 4.79E+0  | 5.23E+0 | -1.09E+0 | 0.00E+0 | -3.18E+1 | -6.98E+1 |
| SM        | [kg] | 5.37E-1 | 0.00E+0 | 1.61E-2  | 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.00E+0  | 0.00E+0  | 0.00E+0 | 0.00E+0  | 0.00E+0 | 0.00E+0  | 4.80E-1  |
| RSF       | [MJ] | 0.00E+0 | 0.00E+0 | 0.00E+0  | 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.00E+0  | 0.00E+0  | 0.00E+0 | 0.00E+0  | 0.00E+0 | 0.00E+0  | 0.00E+0  |
| NRSF      | [MJ] | 0.00E+0 | 0.00E+0 | 0.00E+0  | 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.00E+0  | 0.00E+0  | 0.00E+0 | 0.00E+0  | 0.00E+0 | 0.00E+0  | 0.00E+0  |
| FW        | [m³] | 5.82E-2 | 2.60E-4 | 2.38E-3  | 0.00E+0 | 4.13E-3 | 1.45E-5 | 1.98E-2  | 2.00E-2  | 4.82E-5 | -2.40E-4 | 0.00E+0 | -7.01E-3 | -6.09E-3 |

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

# RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A1:

| Parameter | Unit     | A1-A3     | A4         | A5          | B1       | B2       | C2          | C3/2      | C3/3    | C4/1          | D         | D/1       | D/2       | D/3      |
|-----------|----------|-----------|------------|-------------|----------|----------|-------------|-----------|---------|---------------|-----------|-----------|-----------|----------|
| HWD       | [kg]     | 1.28E-7   | 2.05E-10   | 4.22E-9     | 0.00E+0  | 5.90E-10 | 1.14E-11    | 1.25E-8   | 1.27E-8 | 9.40E-10      | -2.45E-10 | 0.00E+0   | -7.15E-9  | -2.66E-9 |
| NHWD      | [kg]     | 4.77E-1   | 6.05E-4    | 4.92E-2     | 0.00E+0  | 5.62E-3  | 3.37E-5     | 1.16E+0   | 1.16E+0 | 4.98E+0       | -5.11E-4  | 0.00E+0   | -1.49E-2  | -2.39E-1 |
| RWD       | [kg]     | 7.01E-3   | 4.93E-6    | 2.14E-4     | 0.00E+0  | 3.32E-4  | 2.74E-7     | 1.30E-4   | 2.03E-4 | 6.07E-5       | -7.91E-5  | 0.00E+0   | -2.31E-3  | -1.88E-4 |
| CRU       | [kg]     | 0.00E+0   | 0.00E+0    | 0.00E+0     | 0.00E+0  | 0.00E+0  | 0.00E+0     | 0.00E+0   | 0.00E+0 | 0.00E+0       | 0.00E+0   | 0.00E+0   | 0.00E+0   | 0.00E+0  |
| MFR       | [kg]     | 1.99E-2   | 0.00E+0    | 1.30E-1     | 0.00E+0  | 0.00E+0  | 0.00E+0     | 0.00E+0   | 1.26E+0 | 0.00E+0       | 0.00E+0   | 0.00E+0   | 0.00E+0   | 0.00E+0  |
| MER       | [kg]     | 0.00E+0   | 0.00E+0    | 0.00E+0     | 0.00E+0  | 0.00E+0  | 0.00E+0     | 0.00E+0   | 0.00E+0 | 0.00E+0       | 0.00E+0   | 0.00E+0   | 0.00E+0   | 0.00E+0  |
| EEE       | [MJ]     | 0.00E+0   | 0.00E+0    | 2.96E-1     | 0.00E+0  | 0.00E+0  | 0.00E+0     | 8.75E+0   | 0.00E+0 | 0.00E+0       | 0.00E+0   | 0.00E+0   | 0.00E+0   | 0.00E+0  |
| EET       | [MJ]     | 0.00E+0   | 0.00E+0    | 5.45E-1     | 0.00E+0  | 0.00E+0  | 0.00E+0     | 1.62E+1   | 0.00E+0 | 0.00E+0       | 0.00E+0   | 0.00E+0   | 0.00E+0   | 0.00E+0  |
| 111       | MD = 11a | -ardaua u | vaata dian | aaadı NII I | MD - Nor | bozordo  | ua vuanta i | dianaaadı | DWD - D | a dia a ative | aata di   | anaaadı C | DII - Car | mnononto |

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported



# References

#### EN 1307

DIN EN 1307: 2014+A1:2016: Textile floor coverings - Classification

#### EN 13501-1

DIN EN 13501-1:2010-01: Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests

# EN 14041

DIN EN 14041: 2018-05: Resilient, textile and laminate floor coverings - Essential characteristics

# EN 15804

EN 15804:2012-04+A1 2013/, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

#### EN 16810

DIN EN 16810: 2017-08: Resilient, textile and laminate floor coverings – Environmental product declarations – Product category rules

# ISO 10874

DIN EN ISO 10874: 2012-04: Resilient, textile and laminate floor coverings - Classification

# ISO 14025

DIN EN /ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

# ISO 15686

ISO 15686: Buildings and constructed assets - Service life planning

ISO 15686-1: 2011-05: Part 1: General principles and framework

ISO 15686-2: 2012-05: Part 2: Service life prediction procedures

ISO 15686-7: 2006-03: Part 7: Performance evaluation for feedback of service life data from practice ISO 15686-8: 2008-06: Part 8: Reference service life and service-life estimation

# Regulation (EU) No. 305/2011

Regulation No. 305/2011 Construction Products Regulation (CPR) of the European Council and of the European Parliament, April 2011

# **CML** characterization factors

Impact assessment characterization factors, version 4.7, August 2016, Institute of Environmental Sciences - 'Centrum voor Milieuwetenschappen in Leiden' (CML), Leiden, The Netherlands

#### ECHA candidate list

Candidate List of substances of very high concern (SVHCs) for authorisation, 16.01.2020, European Chemicals Agency (ECHA), Helsinki, Finland

#### ecoinvent 3.6

ecoinvent, Zurich, Switzerland, database version 3.6, published September 2019

# GaBi database 2021-1

GaBi Software-System and Database for Life Cycle Engineering, thinkstep AG, Leinfelden-Echterdingen, 2021-1

#### **IBU 2021**

IBU (2016): General Programme Instructions for the Preparation of EPDs at the Institut Bauen und Umwelt e.V., Version 2.0 Institut Bauen und Umwelt e.V., Berlin, www.ibu-epd.de

# **PCR Part A**

Product Category Rules for Construction Products from the range of Environmental Product Declarations. Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report, V1.9, Berlin: Institut Bauen und Umwelt e.V. (IBU), Januar 2021

# **PCR Part B**

Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for floor coverings, V1.2, Berlin: Institut Bauen und Umwelt e.V. (IBU), February 2018

# **PRODIS**

Product Information System (PRODIS) of the European Carpet Industry, Gemeinschaft umweltfreundlicher Teppichboden e.V (GUT) and European Carpet and Rug Association (ECRA), http://www.pro-dis.info

# REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Last update: 25.03.2014 (Status: 27.06.2018)

# VDZ e.V

Association of German Cement Works, Ed. Environmental Data of the German Cement Industry 2018

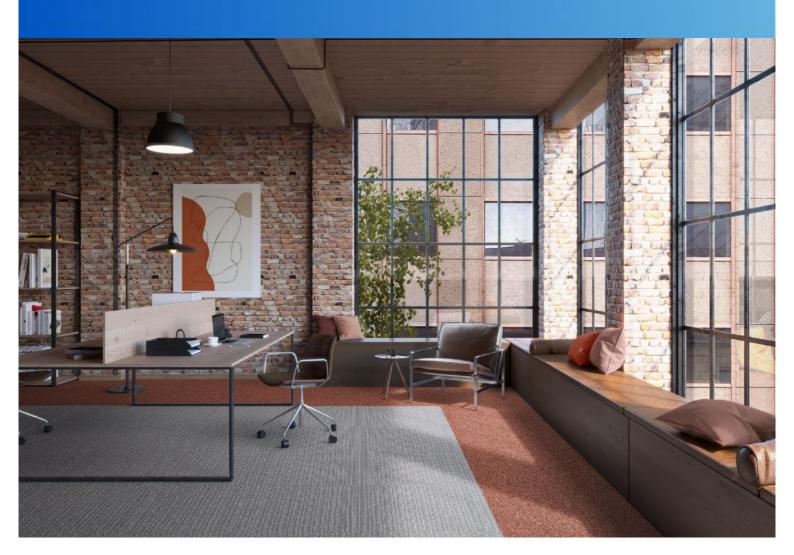
| Institut Bauen<br>und Umwelt e.V.                   | Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany                                                        | Tel<br>Fax<br>Mail<br>Web | +49 (0)30 3087748- 0<br>+49 (0)30 3087748- 29<br>info@ibu-epd.com<br>www.ibu-epd.com      |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------|
| Institut Bauen<br>und Umwelt e.V.                   | Programme holder<br>Institut Bauen und Umwelt e.V.<br>Panoramastr 1<br>10178 Berlin<br>Germany                                      | Tel<br>Fax<br>Mail<br>Web | +49 (0)30 - 3087748- 0<br>+49 (0)30 - 3087748 - 29<br>info@ibu-epd.com<br>www.ibu-epd.com |
| CARPETS ROTE TO | Author of the Life Cycle Assessment Gemeinschaft umweltfreundlicher Teppichboden (GUT) e.V. Schönebergstraße 2 52068 Aachen Germany | Tel<br>Fax<br>Mail<br>Web | +49 (0)241 96843 410<br>+49 (0)241 96843 400<br>mail@gut-ev.de<br>www.gut-ev.org          |
| modu<br>lyss <sup>*</sup>                           | Owner of the Declaration<br>modulyss<br>Zevensterrestraat 21<br>9240 Zele<br>Belgium                                                | Tel<br>Fax<br>Mail<br>Web | +32 (0)52 45 72 11<br>+32 (0)52 44 90 99<br>info@modulyss.com<br>www.modulyss.com         |



# **Environmental Product Declaration**

# GUT/Prodis ID: 2BFDC1FC

# modulyss


# FIRST STREAMLINE ecoBack

surface pile weight: 340 g/m<sup>2</sup> pile material: 100% polyamide 6

backing: ecoBack

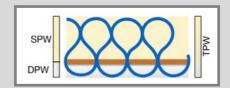
These EPD data are <u>only valid</u> in combination with the environmental product declaration EPD-MOD-20210150-CBC1-EN published by Institut Bauen und Umwelt e.V. (IBU) and a GUT/Prodis license

This data set gives product specific LCA results based on the calculation procedure described in the above mentioned EPD.

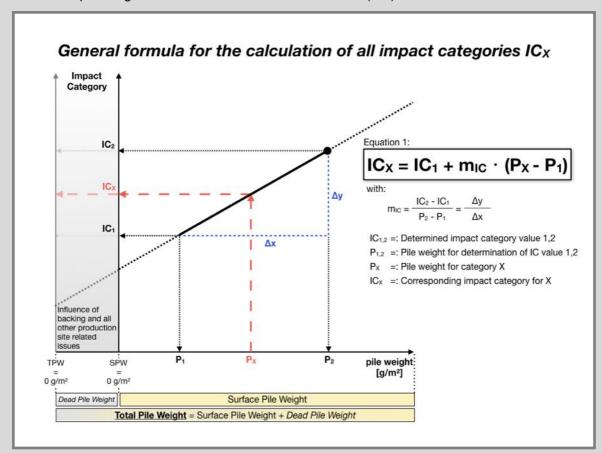




# Calculation method for similar Products of the EPD document


The EPD document is valid for all products with a surface pile weight lower or equal to the declared maximum pile weight of 1300 g/m<sup>2</sup>.

The respective declaration number is EPD-MOD-20210150-CBC1-EN.


This document indicates more specific LCA results for (a) product(s) with identical material compositions and production parameters. The product(s) belong(s) to the same family of products and only differ in its/their pile weight(s).

LCA results show a linear correlation with the total pile weight, for all impact categories (IC) and all modules (A-D). It is possible to calculate specific LCA results ( $IC_x$ ) for every carpet (x) within the declared group of products in relation to its total pile weight ( $P_x$ ).

The total pile weight (TPW) is the sum of surface pile weight (SPW) and dead pile weight (DPW):



The surface pile weight is the technical relevant value according to EN 1307 and has to be mentioned in technical specification. As shown in the figure below alternatively to the total pile weight the surface pile weight can be used to calculate LCA results (ICx).



 $\textbf{Graph 1:} \ \text{General formula for the calculation of all impact categories } \ \text{IC}x.$ 



# General Information on use stages B1 to B7

LCA results indicate environmental impacts resulting from use stage B1 to B7.

For textile floor coverings only modules B1 (use) and B2 (maintenance) are taken into account. Modules B3 (repair), B4 (replacement), B5 (refurbishment), B6 (operational energy use) and B7 (operational water use) are not relevant during the service life of textile floor coverings.

**Module B1** 'use' includes emissions to the indoor air during the use stage. Relevant emissions only occur in the first year of life (see LCA: Calculation rules).

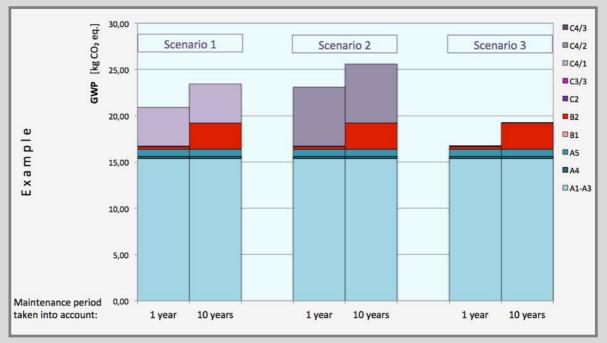
Module B2 'maintenance' includes cleaning procedures.

# Reference service life (RSL)

The actual service life of textile floor coverings depends on a wide range of various impact factors such as the allocation of the application area to the use class, maintenance, intensity of use and most often fashion and building related aspects. Therefore, technical service life cannot be defined for textile floor coverings.

# Total environmental impacts from module B2

Total environmental impacts have to be calculated by taking into account the service life of textile floor coverings. Therefore, the assumed real life (ARSL) has to be used for the calculation of total environmental impacts taking into account the expected use conditions (see RSL). Module B2 (maintenance) is depending on the service life.


Values for module B2 given in the result tables are indicated for the period of one year. They have to be multiplied by the ARSL of the textile floor covering taking into account building related aspects.

The influence of the maintenance period on the Global Warming Potential (GWP) of the whole life cycle of a textile floor covering - differentiated for 3 end-of-life scenarios - is illustrated in the graph below.

# 3 end-of-life scenarios:

Scenario 1: 100 % Landfill disposal

Scenario 2: 100 % Municipal waste incineration Scenario 3: 100 % Recycling in the cement industry



**Graph 2:** Global Warming Potential (GWP) - aggregation of module A to module C - taking into account a maintenance period of 1 year compared to a maintenance period of 10 years - for the three declared end-of-life scenarios.



# 1. Information on the product FIRST STREAMLINE ecoBack

# **Product description**

| Name                     | Value               | Unit |
|--------------------------|---------------------|------|
| Type of manufacture      | tufted tiles        | -    |
| Yarn type                | 100% polyamide 6    | -    |
| Total pile weight        | 540                 | g/m² |
| Surface pile weight      | 340                 | g/m² |
| Dead pile weight         | 200                 | g/m² |
| Secondary backing        | ecoBack             | -    |
| Product Form             | tiles 50 cm x 50 cm | -    |
| Max. total carpet weight | 4240                | g/m² |

# Base materials / Ancillary materials

| Name                                 | Value for category | Unit |
|--------------------------------------|--------------------|------|
| Polyamide 6                          | 12,7               | %    |
| Polyester                            | 12,7               | %    |
| Polypropylene                        | 0,7                | %    |
| Limestone                            | 38,7               | %    |
| Aluminiumhydroxide                   | 11,9               | %    |
| SBR-Latex                            | 11,6               | %    |
| Polyolefin                           | 10,4               | %    |
| Glass fibre                          | 0,3                | %    |
| Additives                            | 1,0                | %    |
| Recycled content out of total weight | 43 %               | %    |

# LCA: Declared Unit

| Name                      | Value for category | Unit  |
|---------------------------|--------------------|-------|
| Declared unit             | 1,0                | m²    |
| Conversion factor to 1 kg | 4,2                | kg/m² |

# LCA: Scenarios and additional technical information

All indicated values refer to the declared functional unit

# Transport to the construction site (A4)

| Name                                        | Value for category | Unit    |
|---------------------------------------------|--------------------|---------|
| Litres of fuel (truck, EURO 0-5 mix)        | 0,0099             | l/100km |
| Transport distance                          | 700                | km      |
| Capacity utilisation (including empty runs) | 55                 | %       |

# Installation in the building (A5)

| Name          | Value for category |    |  |  |  |
|---------------|--------------------|----|--|--|--|
| Material lost | 0,13               | kg |  |  |  |

# Maintenance (B2)

Indication per m<sup>2</sup> and year

| Name                                | Value for category | Unit   |
|-------------------------------------|--------------------|--------|
| Maintenance cycle (wet cleaning)    | 1,5                | 1/year |
| Maintenance cycle (vacuum cleaning) | 208                | 1/year |
| Water consumption (wet cleaning)    | 0,004              | m³     |
| Cleaning agent (wet cleaning)       | 0,09               | kg     |
| Electricity consumption             | 0,314              | kWh    |

# End of Life (C1-C4)

| Name                                                     | Value for category | Unit              |
|----------------------------------------------------------|--------------------|-------------------|
| Collected as mixed construction waste (scenario 1 and 2) | 4,24               | kg/m <sup>2</sup> |
| Collected separately (scenario 3)                        | 4,24               | kg/m <sup>2</sup> |
| Landfilling (scenario 1)                                 | 4,24               | kg/m²             |
| Energy recovery (scenario 2)                             | 4,24               | kg/m²             |
| Energy recovery (scenario 3)                             | 2,08               | kg/m²             |
| Recycling (scenario 3)                                   | 2,16               | kg/m²             |



# LCA: Results for FIRST STREAMLINE ecoBack

(calculated with a total pile weight of 540 g/m²)

The declared result figures in module B2 have to be multiplied by the assumed service time (in years) of the floor covering in the building considered (see chapter: 'General Information on use stages B1 to B7').

# Information on un-declared modules:

Modules B3 - B7 are not relevant during the service life of the carpet and are therefore not declared.

Modules C1, C3/1, C4/2 and C4/3 cause no additional impact and are therefore not declared.

Module C2 represents the transport for scenarios 1, 2 and 3.

# Description of the system boundary

(X = Included in LCA; MDN = Module not declared

| State of production             | State of construction phase   | State of use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | End of life state                                                                          | Credits and loads after life |  |
|---------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------|--|
| X B transport X B manufacturing | X Y delivery X G installation | Lase use maintenance maintenan | Stop of use / demolition   X   S   transport   X   S   waste management   X   S   disposal | x o recycling potential      |  |

# Results for the LCA - Environmental impact: 1 m<sup>2</sup> floor covering

| Para-<br>meter | Unit          | A1-A3    | A4        | <b>A</b> 5 | B1       | B2       | C2        | C3/2     | C3/3     | C4/1     | D/A5      | D/1      | D/2       | D/3       |
|----------------|---------------|----------|-----------|------------|----------|----------|-----------|----------|----------|----------|-----------|----------|-----------|-----------|
| GWP            | [kg CO2-eq]   | 1,07E+01 | 2,54E-01  | 7,13E-01   | 0,00E+00 | 2,91E-01 | 1,40E-02  | 5,34E+00 | 5,40E+00 | 2,88E-01 | -4,97E-02 | 0,00E+00 | -1,40E+00 | -4,61E-01 |
| ODP            | [kg CFC11-eq] | 2,65E-09 | 4,44E-17  | 7,94E-11   | 0,00E+00 | 1,21E-08 | 2,45E-18  | 1,99E-15 | 2,74E-15 | 9,77E-16 | -7,63E-16 | 0,00E+00 | -2,15E-14 | -2,55E-15 |
| AP             | [kg SO2-eq]   | 1,75E-02 | 1,05E-03  | 6,32E-04   | 0,00E+00 | 1,14E-03 | 5,82E-05  | 2,42E-03 | 2,61E-03 | 7,47E-04 | -5,78E-05 | 0,00E+00 | -1,63E-03 | -1,55E-03 |
| EP             | [kg PO4)3-eq] | 2,89E-03 | 2,67E-04  | 1,13E-04   | 0,00E+00 | 3,17E-04 | 1,48E-05  | 5,71E-04 | 6,13E-04 | 8,11E-04 | -7,92E-06 | 0,00E+00 | -2,23E-04 | -2,10E-04 |
| POCP           | [kg ethen-eq] | 1,80E-03 | -4,50E-04 | 4,41E-05   | 6,29E-05 | 1,47E-04 | -2,49E-05 | 1,53E-04 | 9,38E-05 | 6,72E-05 | -5,29E-06 | 0,00E+00 | -1,49E-04 | -1,57E-04 |
| ADPE           | [kg Sb-eq]    | 6,34E-06 | 2,25E-08  | 1,97E-07   | 0,00E+00 | 4,43E-06 | 1,25E-09  | 1,89E-07 | 2,00E-07 | 5,52E-08 | -9,35E-09 | 0,00E+00 | -2,64E-07 | -2,91E-07 |
| ADPF           | [MJ]          | 2,24E+02 | 3,46E+00  | 6,92E+00   | 0,00E+00 | 6,77E+00 | 1,92E-01  | 2,65E+00 | 3,39E+00 | 4,30E+00 | -7,13E-01 | 0,00E+00 | -2,01E+01 | -4,76E+01 |

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources



# Results for the LCA - Resource use: 1 m<sup>2</sup> floor covering

| Para-<br>meter | Unit | A1-A3    | A4       | <b>A</b> 5 | B1       | B2       | C2       | C3/2      | C3/3      | C4/1     | D/A5      | D/1      | D/2       | D/3       |
|----------------|------|----------|----------|------------|----------|----------|----------|-----------|-----------|----------|-----------|----------|-----------|-----------|
| PERE           | [MJ] | 2,19E+01 | 1,94E-01 | 1,08E+00   | 0,00E+00 | 1,24E+00 | 1,07E-02 | 4,73E-01  | 6,91E-01  | 3,22E-01 | -1,97E-01 | 0,00E+00 | -5,55E+00 | -6,02E-01 |
| PERM           | [MJ] | 3,90E-01 | 0,00E+00 | -3,90E-01  | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| PERT           | [MJ] | 2,23E+01 | 1,94E-01 | 6,90E-01   | 0,00E+00 | 1,24E+00 | 1,07E-02 | 4,73E-01  | 6,91E-01  | 3,22E-01 | -1,97E-01 | 0,00E+00 | -5,55E+00 | -6,02E-01 |
| PENRE          | [MJ] | 1,84E+02 | 3,47E+00 | 7,50E+00   | 0,00E+00 | 7,86E+00 | 1,92E-01 | 5,42E+01  | 5,51E+01  | 4,43E+00 | -8,72E-01 | 0,00E+00 | -2,47E+01 | -4,80E+01 |
| PENRM          | [MJ] | 5,17E+01 | 0,00E+00 | -2,15E-01  | 0,00E+00 | 0,00E+00 | 0,00E+00 | -5,14E+01 | -5,14E+01 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| PENRT          | [MJ] | 2,36E+02 | 3,47E+00 | 7,28E+00   | 0,00E+00 | 7,86E+00 | 1,92E-01 | 2,93E+00  | 3,83E+00  | 4,43E+00 | -8,72E-01 | 0,00E+00 | -2,47E+01 | -4,80E+01 |
| SM             | [kg] | 5,37E-01 | 0,00E+00 | 1,61E-02   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 4,80E-01  |
| RSF            | [MJ] | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| NRSF           | [MJ] | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| FW             | [m³] | 4,05E-02 | 2,21E-04 | 1,77E-03   | 0,00E+00 | 4,13E-03 | 1,23E-05 | 1,72E-02  | 1,74E-02  | 4,09E-05 | -1,93E-04 | 0,00E+00 | -5,41E-03 | -4,33E-03 |

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PERE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERM = Use of non-renewable primary energy resources; SM = Use of secondary material; PERF = Use of renewable primary energy resources; SM = Use of secondary material; PERF = Use of renewable primary energy resources; SM = Use of secondary material; PERF = Use of renewable primary energy resources; SM = Use of secondary material; PERF = Use of renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials; PERF = Use of non-renewable primary energy resources used as raw materials;

# Results for the LCA - Output flows and waste categories: 1 m<sup>2</sup> floor covering

| Para-<br>meter | Unit | A1-A3    | A4       | <b>A</b> 5 | B1       | B2       | C2       | C3/2     | C3/3     | C4/1     | D/A5      | D/1      | D/2       | D/3       |
|----------------|------|----------|----------|------------|----------|----------|----------|----------|----------|----------|-----------|----------|-----------|-----------|
| HWD            | [kg] | 9,06E-08 | 1,75E-10 | 3,09E-09   | 0,00E+00 | 5,90E-10 | 9,68E-12 | 1,23E-08 | 1,24E-08 | 7,97E-10 | -1,96E-10 | 0,00E+00 | -5,54E-09 | -2,54E-09 |
| NHWD           | [kg] | 4,11E-01 | 5,16E-04 | 4,70E-02   | 0,00E+00 | 5,62E-03 | 2,86E-05 | 1,15E+00 | 1,15E+00 | 4,22E+00 | -4,09E-04 | 0,00E+00 | -1,16E-02 | -2,39E-01 |
| RWD            | [kg] | 4,70E-03 | 4,20E-06 | 1,45E-04   | 0,00E+00 | 3,32E-04 | 2,32E-07 | 1,15E-04 | 1,77E-04 | 5,15E-05 | -6,33E-05 | 0,00E+00 | -1,79E-03 | -1,55E-04 |
| CRU            | [kg] | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| MFR            | [kg] | 2,30E-02 | 0,00E+00 | 1,30E-01   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,26E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| MER            | [kg] | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| EEE            | [MJ] | 0,00E+00 | 0,00E+00 | 2,42E-01   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,95E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| EET            | [MJ] | 0,00E+00 | 0,00E+00 | 4,48E-01   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,30E+01 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |

Caption HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported thermal energy